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Abstract. The vibrational behaviour of vacancies in bcc metals is discussed with the use of
the Green function method. In particular the local densities of states of the first and second
neighbours of the vacancy, the atoms most affected by the defect, inα-Fe, Mo and W have been
calculated. The local density of states of the first neighbours is shifted to lower frequencies
as compared to host spectra whereas the local spectra of second neighbours in Mo and W are
little affected by the defect; inα-Fe the second neighbour spectrum shifts to higher frequencies.
However, in all three metals the local spectra of neighbours of the vacancy do not show any
resonance or localized modes. The local spectra of neighbours have been utilized to calculate
formation entropy and thermal mean-square displacements. The obtained values for formation
entropy using the local density of states approach are similar to those found by other methods.

1. Introduction

The study of dynamics of irradiation-produced point defects, vacancies and self-interstitials
is of fundamental importance in an understanding of physical properties of irradiated metals
[1]. The study of dynamics not only provides direct interpretation of some of the physical
properties but also elucidates aspects of the general problem of radiation damage in these
metals. In this context in most of the recent studies on the dynamics of point defects in
metals, the focus of attention has been on self-interstitials [2] while less attention has been
paid to the dynamics of vacancies in metals though they are expected to play an equally
important role in the interpretation of various properties of the irradiated metals, and also
the structures of vacancies are simpler than those of the interstitials.

The earlier studies [3, 4] of vacancies in metals were mostly concerned with their static
properties, such as energies and relaxations around the vacant site, and only a few of them
have discussed the dynamical aspects of vacancies. Land and Goodman [5] carried out
an investigation of the vibrational effects of vacancies in cubic metals with short-ranged
forces using a molecular approximation. Their result for copper showed the appearance of
a mode slightly above the maximum frequency of the crystal which they regarded as a local
mode. On the other hand, Hatcheret al [6] have used the Green function method to discuss
the vibrational behaviour of vacancies in Cu andα-Fe and have found that no local mode
appears. Therefore, from the above inconclusive result on the dynamical aspects of the
vacancies, it has been felt that more work is needed to obtain further insight and understand
the vibrational behaviour of vacancies in metals. Quite recently Blah and Ram [7] have
discussed the vibrational behaviour of vacancies in Mo.
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Another aspect which plays an important role in the study of vacancies is the choice
of an appropriate potential suitable for the distorted region round the vacant site. From
our experience with vibrational properties of self-interstitials inα-Fe, Mo and W and their
neighbours in Mo [8, 9], using the Green function method, it has been felt that the potential
constructed by Johnson and Wilson (JW) [10] provides a reasonable description of dynamical
properties of point defects in these metals. Therefore, in this paper the JW potential is used
to study the vibrational behaviour of the vacancies in three normal bcc metals,α-Fe, Mo and
W, and calculate the local density of states of the atoms surrounding the vacancy. The local
density of states is used to calculate dynamical properties such as formation entropy and
mean square displacements of the concerned atoms. The calculation of formation entropy
for vacancies is important in more than one way: a knowledge of formation entropy enables
one to determine the concentration of vacancies and to calculate the self-diffusion constant in
metals; and, in view of the non-availability of any reliable experimental value of formation
entropy for vacancies, a theoretical calculation of its value is worthwhile. As a matter of
fact, an accurate determination of defect parameters, formation energies and entropies is
quite essential for the interpretation of the self-diffusion data in irradiated metals. While
the static properties of the defect determine the formation energy, the dynamical properties
determine the formation entropy. It is the study of the dynamics of the defects which
facilitates an accurate determination of the formation entropy, its temperature dependence
and the vibrational contribution to formation energy [11]. It is not surprising, therefore, that
most of the earlier work on the vibrational properties of vacancies in metals was concerned
with the calculation of formation entropy. Earlier calculations of formation entropy of
vacancies in bcc metals include those by Burton [12] who obtained values ranging from
2.2k to 2.6k for bcc metals.

We have calculated the local density of states of the first and second neighbours of
vacancies inα-Fe, Mo and W by two methods: (i) by using the JW potential consistently,
i.e., for the calculation of perfect lattice Green’s functions and the changes in force constants
in the vacant site and (ii) by following the procedure used in the earlier work regarding
self-interstitials [8, 9] where a perfect lattice is described by phonons measured in neutron
scattering experiments [13–15] while the force constants near the vacancy are found from
JW potentials and they are scaled by the nearest neighbour force constant in the lattice
dynamic model. From the local frequency spectra of the first and second neighbours of
the vacancy, the vacancy formation entropy can be calculated easily since the change in
frequency spectrum of the lattice is closely related to the local frequency spectra of the
neighbours. The vacancy formation entropy is calculated both for the case of the relaxed
lattice and for the case of the unrelaxed lattice. It is expected that the formation entropy
for the unrelaxed lattice will be smaller than that of the relaxed case.

2. Local density of states

We use the Green function method [16] to obtain the local density of states of neighbours
of a vacancy. The local density of states can be expressed in terms of the Green function
of the defect lattice. The vacancy is taken at the origin and its interaction with the first and
second neighbours is modelled by missing springs to these atoms which are then relaxed
to new positions. This results in modifications of force constants between neighbouring
atoms. The remaining atoms of the host crystal beyond second neighbours are assumed to
be unperturbed.
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The Green function for the defect lattice is given by(
8−Mω2

)
G(ω) = 1 (1)

while that of the ideal lattice is( ◦
8 −

◦
M ω2

) ◦
G (ω) = 1 (2)

where8 is the force constant in a relaxed lattice and
◦
8 that of the ideal lattice while every

quantity pertaining to an ideal lattice is indicated by◦.
By using (1) and (2) we can express the defect Green functionG in terms of the ideal

lattice Green function
◦
G as

G(ω) = ◦G (ω)

[
1+ V (ω) ◦G (ω)

]−1

(3a)

where

V (ω) = 18+ ◦
M ω2 and18 = 8− ◦

8 . (3b)

The Green functionG(ω) is used to obtain the local density of states of an atoml in
theα-direction in the defect lattice as

Zα(l, ω) = 2ωM

π
ImGαα(l, l; ω). (4)

The local density of states provides an elegant way to discuss those properties of the
solids which do not depend on the atom–atom correlations in the lattice. Further, all the
thermodynamic properties of the crystal can be expressed in terms of the local spectra of
all the atoms. The local density of states is particularly useful in those situations where a
defect mode, resonant or localized mode, is dominated by the vibration of the defect only:
since, then, such modes are easily identified as resonant-type peaks in the local spectrum
of the defect.

2.1. Formation entropy

The production of a vacancy increases the entropy of the crystal and this increase in entropy
is known as the vacancy formation entropy. The vacancy formation entropy is closely related
to the local density of states of the neighbours of the vacancy, especially to those of the first
and second neighbours. The formation entropy of the vacancy may be calculated in terms
of the change in the frequency spectrum in the presence of the vacancy. Leaving apart a
negligible small electronic contribution, the vibrational contribution to the entropy is given
by [16]

S = k
∑
s

σ
(
ωs, T

)
(5a)

with

σ(ω, T ) = h̄ω/kT

exp(h̄ω/kT )− 1
− ln [1− exp(−h̄ω/kT )]. (5b)

In the classical limit of high temperatures, the expression forσ(ω, T ) reduces to

σ(ω, T ) = 1− ln (h̄ω/kT ). (6)

With the use of the total frequency spectrum, the entropy is expressed as

S = k
∫ ∞

0
σ(ω, T )Z(ω) dω (7)
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whereas the formation entropy is given by

SF1V = k
∫ ∞

0
σ(ω, T )1z(ω) dω (8)

where1z(ω) is the change in frequency spectrum due to a single vacancy.
The change in frequency spectrum can be expressed in terms of the generalized phase

shift π times the integrated density of states [16]. However, in the present work we will
utilize a local representation of the total spectrum to express the formation entropy in terms
of local frequency spectra of all the atoms in a defective lattice as well as an ideal lattice
so that

SF1V = 3k
∫ ∞

0
σ(ω, T )

∑
l

{
z(l, ω)− ◦z (l, ω)} dω. (9)

For a weakly perturbing defect like the vacancy we expect the local frequency spectra of
only a few neighbouring atoms to be significantly different from that of the host spectrum.

Apart from the vibrational contribution to the formation entropy, the contribution due
to image forces is also taken into consideration for a relaxed lattice. The displacements due
to image forces for vacancies lead to a homogeneous contraction of the lattice and hence to
the strengthening of the force constant, i.e., a negative contribution to formation entropy.
The volume change caused by image forces is [16]

1V Im = 2

3

1− 2p

1− p 1V (10)

where1V is the total volume change andp is the Poisson ratio.
The change in formation entropy due to volume relaxation is obtained from the

thermodynamic relation(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

= −V
(
∂P

∂V

)
T

1

V

(
∂V

∂T

)
P

= Kβ (11)

whereK is the isothermal bulk modulus andβ the volume expansion coefficient. The
change in formation entropy due to image forces is

1SF1V (image) = Kβ1V Im. (12)

3. Calculated results and discussion

We have calculated the local density of states of the neighbours of the vacancies in three
normal bcc metals,α-Fe, Mo and W, with the Green function method. To calculate the
local density of states of atoms near a vacancy we have evaluated the force constants in

the vicinity of the vacant site as also the ideal lattice Green function
◦
G(ω). The vacancy

is described by zero coupling to its neighbours. For calculation of
◦
G(ω), two sets of force

constants have been used: (i) calculated force constants based on the JW potentials and
(ii) force constants obtained from the experimental-based phonons fitted to the Born–von

Karman force models. Therefore, in this case two sets of Green’s functions
◦
G(ω) are

obtained with the help of the modified Gilat–Raubenheimer method [17]. For calculation
of matrix elements of8 in a relaxed lattice, the static displacements of first and second
neighbours of the vacancy are taken from molecular dynamics calculations of Tajiet al
[18] which give inward displacements of first neighbours and outward displacements of
second neighbours away from the vacant site along the coordinate axes. The atoms falling
in the cluster of first and second neighbours of the vacant site take up new equilibrium
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positions, while other atoms beyond the second neighbours are considered to be in their
perfect lattice positions. With new equilibrium positions of atoms in the defect space we
have eight new distances between these atoms. Using the JW potential, the force constants
Ai , Bi (i = 1, 8) are calculated at the new equilibrium interatomic distances, as also are
the perfect lattice force constantsAi0, Bi0 (i = 1, 2) when the perfect lattice Green functions
◦
G (ω) are calculated by using force constants obtained from Born–von Karman fits to
measured phonons in neutron scattering experiments; the force constants determined on the
basis of the JW potential are scaled byA1

0 which is the nearest neighbour force constant
in the ideal lattice occurring in the phonon model. This means that the force constants
calculated on the basis of the JW potential are scaled according to the measured phonon
force model. This type of procedure is essential for ensuring consistency between phonons
used in the calculation of Green’s functions and the used force constant changes in the
defect space.

The local densities of states of the first and second neighbours of the vacancy in all three
metals are calculated both for the unrelaxed lattice and for the relaxed lattice by using the JW
potential phonons and also by using the experimental phonons. However, in the unrelaxed
case no significant change in the local density of states of the first and second neighbours
of the vacancy as compared to that of the host lattice atom is expected, while in the relaxed
case significant changes are expected. The obtained local densities of states of first and
second neighbours of the vacancy in a relaxed lattice, when the phonons are calculated
from the JW potential, are shown in figures 1–3, forα-Fe, Mo and W, respectively. In the
figures the host spectra are also presented in all three figures for comparison. The frequency
spectrum of the first neighbour is considerably shifted to the lower frequency side of the
spectrum in all cases with some weak peaks which may be treated as incipient resonances.
In all cases no local modes have been found. This behaviour is explained by the loss of
coupling between the vacancy and the neighbouring atom in the (111) direction. This is
also in accordance with the reduced value of Einstein frequency for the atom. The result
is similar to that found by Hatcheret al for copper [6]. However, the frequency spectrum
of the second neighbour is not much different from that of the host lattice in the case of
Mo and W. This shows that the vibrations of only the first neighbours of the vacancy are
significantly changed compared to those of the atoms in the host lattice. In contrast to the
case of Mo and W, the spectrum of the second neighbours inα-Fe shows a significant shift
of the spectrum towards the higher frequencies. The local densities of states of the first and
second neighbours of the vacancy using experimental phonons are similar to those presented
in figures 1–3. However, the shift of local spectra of first neighbours to lower frequencies
in all three metals and that of second neighbours to higher frequencies in the case ofα-Fe
are less compared to those for JW phonons shown in figures 1–3.

The obtained local density of states is used to calculate the formation entropySF1V of
the vacancy in all three metals,α-Fe, Mo and W, with both types of phonon used and also
both for the relaxed lattice and for the case of the unrelaxed lattice. In these calculations
both sets of local spectra have been utilized, so it is clear that we can present four values
of the formation entropy for each metal. For a relaxed lattice, the contribution toSF1V
from image forces in the crystal is also taken into consideration. The image forces yield a
negative contribution toSF1V , indicating a homogeneous contraction of the lattice and hence
a general strengthening of the force constants in the lattice. The relaxation volumes for
α-Fe and Mo are 0.05Vc and 0.1Vc respectively as quoted by Ehrhartet al [19], whereVc
is the unit cell volume. For W we take relaxation volume equal to that of Mo, i.e., 0.1Vc,
since the measured value is not available in this case. The contributions from image forces
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Figure 1. The local density of states of the first neighbour (——) and second neighbour (- - - -)
of a vacancy and a host atom (· · · · · ·) in α-Fe in the case of a relaxed lattice, with ideal phonons
calculated from the JW potential.

Figure 2. The local density of states of the first neighbour (——) and second neighbour (- - - -)
of a vacancy and a host atom (· · · · · ·) in Mo in the case of a relaxed lattice, with ideal phonons
calculated from the JW potential.

towards the formation entropy are−0.0909k for α-Fe, −0.1738k for Mo and−0.1342k
for W. The final values of the formation entropy are presented in table 1. From table 1 it
is evident that the effect of relaxation is different for different metals: for Mo and W this
formation entropy increases in the relaxed lattice while forα-Fe it is reduced. The increase
in formation entropy for Mo and W in the relaxed lattice is understandable, since the most
affected atoms are first neighbours and their local spectra shift to the lower frequency region



Vibrational behaviour of vacancies in bcc metals 10907

Figure 3. The local density of states of the first neighbour (——) and second neighbour (- - - -)
of a vacancy and a host atom (· · · · · ·) in W in the case of a relaxed lattice, with ideal phonons
calculated from the JW potential.

where the density of modes in the host lattice is negligible, whereas the second neighbour
spectra are not much changed in these metals. In the case ofα-Fe also the first neighbour
spectrum shifts to lower frequencies but the second neighbour spectrum shifts to higher
frequencies which causes a reduction of formation entropy.

Table 1. Obtained vacancy formation entropySF1V in α-Fe, Mo and W in the unit ofk/atom:
(a) using JW potentials consistently and (b) using experimental based phonons.

Phonons
used α-Fe Mo W Remarka

a 2.043 1.61 1.921 u
a 1.559 2.25 3.199 r
b 1.646 1.69 2.143 u
b 1.485 1.94 2.446 r

a u is for unrelaxed lattice and r for relaxed lattice.

It would be of interest to compare the values ofSF1V obtained in the present work with
those obtained by other workers. Burton [12] has reported values from 2.2k to 2.6k for
bcc metals based on an empirical relation between formation entropy and lattice relaxation
due to the vacancy. This relation shows an increase in formation entropy due to inward
relaxation of nearest neighbours of a vacancy. The other calculations of formation entropy
in bcc metals are inα-Fe by Hatcheret al [6], who find a value of 2.1k, and in all three
metals by Schoberet al [20], with a value of about 1.8k. Schoberet al [20] have considered
a cluster of 432 atoms with a vacancy at the centre. The vacancy is modelled by missing
force constants to neighbours, thus ignoring the relaxation completely. An examination of
table 1 shows that our results forSF1V for a relaxed lattice are in the same range as obtained
by others. As regards experimental measurements of formation entropy, Schwirtlich and
Schultz [21] have derived a value of 1.5k for Mo on the basis of quenching and recovery
experiments. The calculated values are somewhat higher than the quoted experimental
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results.
We have also utilized the obtained density of states to calculate the mean square thermal

displacements of first and second neighbours of the vacancy. The mean square thermal
displacements of the first and second neighbours have been calculated [8, 9]. For the first
neighbours the thermal displacements are larger than those for their respective host atoms
while for second neighbours the thermal displacement is almost the same as that of the host
atoms for Mo and W in both sets of studies. In the case ofα-Fe the thermal displacements of
the second neighbours are lower than that of the host. The increase in thermal displacement
of the first neighbour is the result of a general shift of the spectrum to lower frequencies,
whereas the decrease in thermal displacements of the second neighbours ofα-Fe is accounted
for by the shift of the spectrum towards higher frequencies. At high temperatures the mean
square thermal displacement increases linearly with temperatureT .

To summarize, the local density of states of neighbours of the vacancy shows that the
vibrations of only the first neighbours are significantly changed compared to those of a
host atom. The obtained value of formation entropy based on local density of states of
the neighbours of the vacancy is in close agreement with the value determined using static
lattice Green functions and is in reasonable agreement with the earlier calculations in the
literature.
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